

SYLLABUS PREDMETA

General information

Course title:	Electronics 1
ISVU ¹ course code:	38250
Studies in which the course is taught:	Professional Study Programme of Mechatronics
Course Instructor:	Anamarija Kirin
Course Assistant:	-
ECTS credits:	5.0
Semester of the course execution:	III
Academic year:	2022/2023
Exam prerequisites:	-
Lectures are given in a foreign language:	english
Aims:	After this course students will understand basic physical
	properties of semiconductors, principles of electronic
	elements, and analysis and design of basic electronic circuits.

Course

Course structure	Number of contact hours per week:	Number of contact hours per semester:	Student's requirements by type of teaching:
Lectures:	2	30	attendance 80%
Tutorials:	2	24	attendance 80%
Practical (lab) sessions:	2	6	attendance 100%
Seminars:	-	-	
Field work:	-	-	
Other:	-	-	
TOTAL:	4	60	

Monitoring of students' work, knowledge evaluation and learning outcomes

Formation of the grade during the implementation of teaching:	LEARNING OUTCOMES (upon completion of the course the student should be able to:)	FACTORS AFFECTING THE GRADE (e.g. term paper, practical work, presentation,)	MAXIMUM NUMBER OF POINTS PER FACTOR
(Define from minimum 5 to maximum 10 learning outcomes)	 I 1: Define the basic physical quantities of semiconductors, insulators (types, charge carriers, energy diagram, drift, diffusion) I 2: Explain the properties of semiconductor PN junction (equilibrium, potential barrier, I-O dependence, temperature influence, impurity concentrations), metal-semiconductor junction (Ohmic and Shottky contact) I 3: Apply the properties of a PN junction to diodes I 4: Apply the properties of a PN junction to bipolar transistors 		FACTOR
	 I 5: Apply the properties of a PN junction to unipolar transistors I 6: Compare the properties of different designs of semiconductor rectifiers, amplifiers, filters and electronic switches 		

¹ ISVU – Information System of Higher Education Institutions in Croatia

SYLLABUS PREDMETA

Alternative formation of the grade (II – I10)	or alternative formation of the grade: I 1 – I 6 written exam 70% of final grade-I1. I2, I3, I4, I5, I6 oral exam 30% of final grade	TOTAL: 100 points
Students' competencies	Students will have a general understanding of signal processing processing systems and will be able to design basic filter types.	models and signal

Prerequisites for course	attendance
signature):	
Prerequisites for taking exams:	lecturer's signature
Grading scale:	(According to the Regulations on student assessment of Karlovac University of Applied Sciences, Article 9, Paragraph 5) 90-100 - excellent (5) (A) 80 to 89.9 - very good (4) (B) 65 to 79.9 - good (3) (C) 60 to 64.9 - sufficient (2) (D) 50 to 59.9 - sufficient (2) (E) 0 to 49.9 - fail (1) (F) Students are graded during class, what forms 70% of final exam. Students who achieve 50% (35 points) and more are allowed to take the final exam. The score on final exam makes 20% of the final grade

ECTS structure

ECTS credits allocated to the course reflect the total burden to the student during adoption of the course content. Total contact hours, relative gravity of the content, effort required for exam preparation, as well as, every other possible burden are taken in account:

Attendance	Term paper	Composition	Presentation	Continuous	Practical work
(active				assessment and	
participation)				evaluation	
0.5	-	-	-	-	1,0
Independent work	Project	Written exam	Oral exam	Other	
-	-	2	1.5		-

Review of topics/units per week associated with learning outcomes

Week	Lectures topics/units and learning outcomes:	Tutorials topics/units and learning outcomes:
1.	Physical properties of crystals I1	Analysis of structural properties I1
2.	Semiconductor materials, semiconductor doping I1	Analysis of P and N type semiconductors doping I1
3.	Energy band diagrams and charge carriers in semiconductors I1	Carrier concentration analysis, density functions I1
4.	Transient effects, electric field formation, charge carrier flow (drift, diffusion), conductivity and resistance I1	Analysis of drift and diffusion effects, semiconductor layer conductivity I1
5.	PN barrier - properties, I-O characteristic, Ohmic and Shottky metal-semiconductor contact I2	PN barrier analysis, semiconductor energy diagram with Ohmic and Shottky electrode contact I2
6.	Basic characteristics of diodes I3	Analysis of PN junction diodes I3
7.	Diode applications I3	Diode application examples I3
8.	Basic characteristics of bipolar transistors I4	Analysis of bipolar transistor operation I4

VELEUČILIŠTE U KARLOVCU Karlovac University of Applied Sciences

SYLLABUS PREDMETA

9.	Application of bipolar transistors I4	Examples of bipolar transistor applications I4
10.	Basic characteristics of MOSFET I5	Analysis of MOSFET operation I5
11.	MOSFET application I5	Examples of MOSFET applications I5
12.	Basic characteristics of JFET I5	Analysis of JFET operation I5
13.	JFET application I5	Examples of JFET applications I5
14.	Properties and applications of single-stage amplifiers with transistors I6	Operational analysis of single stage amplifiers with transistors I6
15.	Differential amplifier with a symmetric input I6	Analysis of amplifier operation with symmetric input I6

References

REFERENCES (compulsory/additional): Boylestad, R., Nashelsky, L., Electronic Devices and Circuit Theory, Pearson; 11th edition, 2012 Cathey, J. J., Schaum's Outline of Electronic Devices and Circuits, McGraw-Hill; 2nd edition, 2002

Exams for the academic year: 2022/2023

	-
Exam dates:	According to the schedule of exams for academic year : 2022/2023

Contact information

1. Course Instructor/Lecturer:	Anamarija Kirin
e-mail:	akirin@vuka.hr
Office hours / Consultations:	Wednesday, 11:00, room 110, Ivana Meštrovića 10